初次证明基因在染色体上的实验是谁的什么实验?
摩尔根的果蝇杂交实验初次证明基因在染色体上,运用了假说演绎法。1910年5月在摩尔根的实验室中诞生了一只白眼雄果蝇。他把这只果蝇与另一只红眼雌果蝇进行交配,在下一代果蝇中产生了全是红眼的果蝇,一共是1240只。
眼睛的颜色基因(R)与性别决定的基因是结在一起的,即在X染色体上。或者像我们现在所说那样是链锁的,那样得到一条既带有白眼基因的X染色体,又有一条Y染色体的话,即发育为白眼雄果蝇。摩尔根及其同事、学生用果蝇做实验材料。
做果蝇单因子科学杂交实验步骤 选处女蝇:每两组做正、反交各1瓶,正交选野生型红眼为母本,突变型白眼为父本,将母本旧瓶中的果蝇全部麻醉处死或释放,在8-12h内收集处女蝇5只,将处女蝇和5只雄蝇转移到新的杂交瓶中,贴好标签,于25℃培养; 7d后,释放杂交亲本(一定要干净)。
子二代雌蝇全为红眼,雄蝇红白参半。相对这个情况说白眼只会出现于雄性上是没问题的。后面白眼雄蝇与杂合雌蝇杂交子代雌雄红白参半。野生型的果蝇全是红眼,白眼的果蝇是1910年发现的突变种,即自然界果蝇不存在Ww基因,后基因突变产生了Ww基因。在当时情况下,说果蝇全是红眼也是对的。
还是要选处女蝇。因为雌果蝇生殖器官有受精囊,可保存交配所得的大量的精子,能使大量的卵细胞受精。因此,在做果蝇杂交实验的时候,雌果蝇必须是处女蝇,保证实验结果的可靠性。雌果蝇自羽化开始10小时之内尚未成熟而无交配能力。
你可以这样来理解:其实果蝇杂交实验证明的是基因在染色体上,而基因在染色体上是基因与染色体存在平行关系的一个含义。望对你有帮助!
为什么果蝇的颜色和性别不表现自由组合定律?
(1)果蝇是XY型性别决定的生物,体细胞中染色体组成为6 XX或6 XY。 (2)假设控制果蝇眼色(A、a)与身色(B、b)的基因位于两对常染色体上。
摩尔根的(一部分)白眼果蝇实验见下图:对于上述实验结果,教材这样写道:控制白眼的基因在X染色体上,而Y染色体上不含有它的等位基因,上述遗传现象就可以得到合理的解释(见下图)。
从教科书P.29图2—8“果蝇杂交实验图解”的分析中,能够得出的结论有:果蝇的红眼和白眼是一对相对性状;红眼是显性性状,白眼是隐性性状;白眼的遗传与性别有关。
摩尔根的研究团队以果蝇作为实验的主角,他们的工作在1925年取得了显著成果。这个微小生物拥有四对染色体,他们已经鉴定出约100个独特的基因。这些研究通过交配试验揭示了基因之间的连锁关系,这一发现为测量染色体上基因间的距离提供了可能。
6—7天后,见到有F1幼虫出现,可除去亲本。再过3—4天,检查F1成蝇的性状,应该是灰体、长翅(正、反交相同)。若性状不符,表明实验有差错,不能再进行下去。发生差错的原因可能是亲本雌果蝇不是处女蝇;F1幼虫出现后亲本未倒干净;杂交时雄蝇选择有误;以及亲本原种不纯等等。
由题意知道:(1)(A)对正常翅(a)为显性,若要通过一次杂交实验确定基因A、a是在常染色体上,还是在X染色体上,则应母本应该选择隐性性状的丁,父本应该选择显性性状的甲,因为在伴X遗传中,母亲是隐性性状则儿子也是隐性性状。
(果蝇是一种非常小的蝇类,经常作为遗传学的实验材料,它作为遗传学实验材
亲本表现类型为:白眼雌蝇×红眼雄蝇实验预期及相应结论为:(1)子代中雌雄全为红眼,则说明在常染色体上.(2)子代中雌果蝇为红眼,雄果蝇为白眼,说明在X染色体上.(3)子代中雌雄既有红眼也有白眼,个体数目接近1:1,则说明在常染色体上.实验二 实验设计中可以采用测交或杂交的原理。
课本这里主要是强调是摩尔根最早把基因和性染色体联系起来,刚开始联系的时候当然是由简单到复杂,不会一下子就联系到XY的同源区段,这是以后科学家们才发现的。不过我们今天可以通过一个简单的实验就能验证。
首先,根据①,F1代全为暗红眼,则暗红眼为显性性状,设为B 其次,根据②,雌性全为暗红眼,说明该性状与性别有关且基因位于x染色体上 则推出实验②中雌性暗红眼有两种可能:X^BX^B , X^BX^b两种可能各占1/2,而雄性暗红眼一定为X^BY 所以;第一种情况:X^BX^B 与 X^BY杂交。
(1)卷曲翅(A)对正常翅(a)为显性,由一对等位基因控制的,若要通过一次杂交实验确定基因A、a是在常染色体上,还是在X染色体上,则应母本应该选择隐性性状的丁,父本应该选择显性性状的甲,因为在伴X遗传中,母本是隐性性状则子代的雄性个体也是隐性性状。
摩尔根果蝇杂交实验的实验过程
摩尔根及其同事、学生用果蝇做实验材料。到1925年已经在这个小生物身上发现它有四对染色体,并鉴定了约100个不同的基因。并且由交配试验而确定链锁的程度,可以用来测量染色体上基因间的距离。1911年他提出了“染色体遗传理论”。摩尔根发现,代表生物遗传秘密的基因的确存在于生殖细胞的染色体上。
果蝇实验:在他的实验中,他选择了一种叫做“白眼”的果蝇作为研究对象,并发现这种特征是由一条特定的染色体上的基因控制的。他还发现,这个基因可以通过杂交传递给后代,并且在每个细胞中都有一个完整的拷贝。这些发现为遗传学的发展做出了重要的贡献,并且奠定了现代遗传学的基础。
(2)实验二与实验三呈现出相同的性状分离比,说明r与e存在平行关系,可能在同一对染色体上,即突变基因r很有可能位于Ⅲ号染色体上。
(1)①亲本的表现型为红眼长翅雌果蝇和红眼长翅雄果蝇,子代的雄果蝇中。
摩尔根用什么方法证明基因在染色体上
选择果蝇为实验材料。过程及现象:选择红眼雌性和白眼雄性交配,后代(F1)无论雌雄都是红眼,再用F1杂交,后代(F2)中有四分之一为白眼且全部为雄性,其余四分之三为红眼,之中三分之一为雄性,三分之二为雌性。
(1)由于长翅和残翅位于第2对染色体长翅和小翅又位于X染色体上所以两位等位基因符合自由组合定律.(2)题意已知纯种小翅雄果蝇和纯种残翅雌果蝇进行杂交,F1均为长翅,F1中表型应该是有XB、A,由于具有隐性上位效应,所以亲本应为:AAXbY 和aaXBXB.F1代基因型为 AaXBY和AaXBXb。
(1)F1出现了非裂翅,说明亲本的裂翅是杂合子,即基因组成包括A、a.(2)只用上述这一次杂交实验,是无法确定该等位基因位于常染色体还是X染色体,根据上述的实验结果也可以认为该等位基因是位于X染色体上,具体分析如下:表现为裂翅的雌果蝇为杂合子,基因型为XAXa。
Ⅰ、用一对果蝇杂交,F1代雌雄个体比例为2:1,说明这对基因的遗传与性别相关联,位于X染色体上,可能的基因型有XNXn、XnXn、XNXN、XNY、XnY.若n纯合时致死,F1代的基因型有XNXn:XNXN:XNY=1:1:1,雌蝇仅有一种表现型,与题意不符;若N纯合时致死。
摩尔根的果蝇杂交实验
染色体不同,杂交方式不同。
1.豌豆是严格的自花传粉,闭花授粉的植物,因此在自然状态下获得的后代均为纯种(纯合子)杂交实验结果可靠。
2.豌豆的不同性状之间差异明显、易于区别,如高茎、矮茎,而不存在介于两者之间的第三高度。
3.孟德尔还发现,豌豆的这些性状能够稳定地遗传给后代。用这些易于区分且稳定的性状进行豌豆品种间的杂交,实验结果容易观察和分析。
4.因为豌豆还具有花朵大,生长周期短和产生子粒较多等特点,便于进行异花传粉时去雄和人工授粉、便于缩短实验周期使实验更易进行和便于统计分析使实验结果更可靠。
1.对教材内容的分析 1903年,美国遗传学家萨顿用蝗虫细胞作为实验材料,研究精子和卵细胞的形成过程。他发现了减数分裂过程中,基因和染色体的行为的一致性,所以萨顿用类比推理的方法提出假说:基因在染色体上。但是类比推理的出的结论并不具有逻辑的必然性,其正确与否,还需要观察和实验的检验。 接下来,美国生物学家摩尔根用果蝇杂交实验为基因位于染色体上提供了证据。摩尔根选用果蝇作为实验材料的原因:果蝇是一种昆虫,有体小、繁殖快、生育力强、饲养容易等优点。1909年,摩尔根从野生型的红眼果蝇培养瓶中发现了一只白眼的雄果蝇,这只例外的白眼雄果蝇特别引起了他的重视,他抓住这个例外不放,用它作了一系列设计精巧的实验。 摩尔根首先做了实验一:
P 红眼(雌) × 白眼(雄)
↓
F1 红眼(雌、雄)
↓F1雌雄交配
F2 红眼(雌、雄) 白眼(雄)
3/4 1/4
从实验一中,不难看出F1中,全为红眼,说明红眼对白眼为显性,而F2中红眼和白眼数量之比为3:1,这也是符合遗传分离规律的,也表明果蝇的红眼和白眼由一对等位基因来控制。所不同的是白眼性状总与性别相关联。如何解释这一现象呢? 摩尔根认为,既然果蝇的眼色遗传与性别相关联,说明控制红眼和白眼的基因在性染色体上。在20世纪初期,生物学家对于果蝇的性染色体有了一定的了解。果蝇是XY型性别决定的生物,果蝇的Y染色体比X染色体长一些。X染色体和Y染色体上的片段可以分为三个区段:X染色体上的非同源区段、Y染色体上的非同源区段和同源区段。(如下图)。在雌果蝇中,有一对同型的性染色体XX,在雄果蝇中,有一对异型的性染色体XY。 那果蝇的眼色基因到底在哪里呢?是在Ⅰ、Ⅱ、Ⅲ中哪个区段上呢? 教材出示了摩尔根的假设,他认为:控制白眼性状的隐性基因由X染色体所携带,Y染色体上不带有白眼基因的等位基因,即控制果蝇眼色的基因在Ⅰ区段上。之后摩尔根用这个假设合理的解释了他所得到的实验现象即实验一。后来通过测交实验进行了验证。到这里,难免让人产生如此疑问:摩尔根怎么如此“草率”的认为控制眼色的基因在Ⅰ区段上?难道不需要排除基因在Ⅱ、Ⅲ区段的可能性吗? 事实上,摩尔根的果蝇实验是很严谨的,他除了做了上面的实验一,还做了如下两个实验。 实验二:将实验一中所得的F1中的红眼雌蝇和白眼雄蝇进行杂交。
P 红眼(雌) × 白眼(雄)
↓
F1 红眼(雌、雄) 白眼(雌、雄)
实验三:摩尔根将实验二所得白眼雌蝇和红眼雄蝇进行杂交。
P 白眼(雌) × 红眼(雄)
↓
F1 红眼(雌) 白眼(雄)
简单推理就容易得到,控制眼色的基因不可能在Ⅲ上,那么在Ⅱ区段上呢? 假设控制眼色的基因在Ⅱ区段上,果蝇眼色基因用B、b来表示,则实验一、二、三的遗传分析图解如下:
实验一: P XB XB (红、雌) × Xb Yb (白、雄)
↓
F1 XB Xb (红、雌) XB Yb(红、雄)
↓F1雌雄交配
F2 XB XB (红、雌) XB Xb (红、雌) XB Yb(红、雄)Xb Yb (白、雄)
可知基因在Ⅱ区段上,可以解释实验一。
实验二:将实验一中所得的F1中的红眼雌蝇和白眼雄蝇进行杂交。
P XB Xb (红、雌) × Xb Yb (白、雄)
↓
F1 XB Xb (红、雌) Xb Xb(白、雌) XB Yb(红、雄)Xb Yb (白、雄)
可知基因在Ⅱ区段上,可以解释实验二。
实验三:将实验二所得白眼雌蝇和红眼雄蝇进行杂交。
P Xb Xb(白、雌) × XB YB(红、雄)
↓
F1 XB Xb (红、雌) Xb YB (红、雄)
果蝇种群中红眼雄果蝇的基因型有三种,只需要以上一个杂交组合就足以证明基因在Ⅱ区段上,不能解释实验三。 综上所述,控制果蝇红眼和白眼的基因在X染色体的非同源区段上,即Y染色体上并没有其等位基因。 2.摩尔根果蝇杂交试验的教学策略 我在设计之初也想按照课本思路进行授课,也听过类似思路的课,而且我发现大家的处理都是在引导学生发现果蝇眼色的遗传符合孟德尔规律,跟性别有关之后,教师就出示了摩尔根的假设,之后用假设来解释他所做的实验。这种处理方式使得科学家经过那么艰难的思维过程才得出的结论现在被我们不费任何力气就得到了,这个过程好像“太容易了”,感觉没有充分利用好这个实验,而且设计过程没有真正引导学生去探究,也没有引起学生学习过程中的矛盾冲突,那么到底应该怎么设计才能充分利用好这个实验,让学生充分探究呢?为引导学生重演摩尔根当年的思维过程,我进行了如下的教学尝试:
【教学片断】 布置学生阅读课本上的果蝇杂交实验。
师:大家思考一下,摩尔根的果蝇杂交实验与前面的孟德尔遗传规律矛盾吗?
生:从3:1的分离比可知,并不矛盾。
师:那这一实验结果有没有特别之处呢?
生:白眼性状与性别有关。
师:(出示果蝇体细胞染色体图解,引导学生明确性染色体的形态)针对上述实验现象,你能提出怎样的假设呢?
生:控制果蝇眼色的基因在性染色体上。
师:很好。(出示果蝇X、Y染色体图,介绍X非同源区段、Y非同源区段和同源区段)请大家再认真的观察一下果蝇的X、Y染色体,结合果蝇杂交实验,你能提出什么问题呢?
生:控制果蝇眼色的基因到底是在哪个区段上?
师:大家能自己找到解决这个问题的方法吗?(学生分组讨论,教师下去巡视,及时提示并观察问题解决的进度。学生很容易排除基因在Y染色体非同源区段上,但是通过遗传图解的书写,学生们发现另外两种情况都能解释课本上的实验)
师:(正当学生一筹莫展时给予及时提示)X非同源区段和同源区段的差异表现在雄性个体的基因型上。如果在同区段上,那么一只纯合红眼雄蝇基因型应该是XBYB,如果在X非同源区段上,则红眼雄基因型为XBY,那如何让这两种情况下产生的配子都显现出来呢?
生:测交,即与白眼雌果蝇杂交。
师:那如何获得白眼雌果蝇呢?(学生讨论)
生:将实验中所得的F1中的红眼雌蝇和白眼雄蝇进行杂交。 然后,师生共同完善相应的遗传图解及推理过程,很快,学生们就得到基因在X染色体非同源区段上的结论。 最后,教师再介绍摩尔根的实验二和实验三,到这时,学生们才恍然大悟,原来他们想到的方法和摩尔根是一样的!
3.对本节内容的教学感悟 在这个教学片断中,我没有直接按照课本上的教学内容来进行教学,而是对其进行了合理的再加工。以上教学过程的设计以学生的思维过程为线索,力求再现摩尔根当初的探究过程,可能当初摩尔根的思路和我们想的并不完全一样,但是我觉得这种教学过程的设计有利于引起学生探究过程中的矛盾冲突,便于突破教学重点和难点。在这节课中,学生经历了一个科学探究过程,首先深入思考作出自己的假设,并与其他同学一起探讨交流,然后自己的推理分析又推翻了自认为很有道理的假设,当三组提出不同假设的学生集合自己的智慧结晶,最终用遗传图解的方式解决这个矛盾后,学生对正确的结论会有更深刻的认识,在自己的脑海中也会留下深刻的印象,同时通过尝试书写遗传图解解释实验现象,不仅能提高应用遗传图解分析和解释遗传学问题的能力,还可以提高学生分析现象、推理验证和解决问题的综合思维能力。 通过这个探究过程也让学生明白了科学研究的艰辛,感受了科学家严谨治学的精神,也在这种潜移默化的学习中提升了学生的生物科学素养。