有理数和无理数的区别(有理数和无理数的区别)

今晚吃什么 古文典籍 5

有理数和无理数的区别?

两者概念不同。 有理数是整数和分数的统称,正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。

区别如下: 1.性质不同有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用。

有理数和无理数的区别定义、性质、运算、几何意义,其相关内容如下:定义:有理数是可以表示为有限小数或无限循环小数的数,而无理数则是无限不循环小数。简单来说,有理数是可以表示为分数的数,而无理数则是不能表示为分数的数。

有理数和无理数的区别:性质不同:有理数是整数和分数的集合,整数也可看做是分母为一的分数。无理数也称为无限不循环小数,不能写作两整数之比。特点不同:有理数和无理数都能写成小数形式,但是有理数可以写为有限小数和无限循环小数,而无理数只能写为无限不循环小数。

有理数和无理数的区别为:小数形式不同,整数之比不同,位数不同等。小数形式不同 把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数。

有理数和无理数怎么区分?

有理数,顾名思义,就是可以表示为两个整数之比的数。例如,等都是有理数。

有理数和无理数的区别(1)性质的区别:有理数是两个整数的比,总能写成整数、有限小数或无限循环小数。无理数不能写成两个整数之比,是无限不循环小数。(2)结构的区别:有理数是整数和分数的统称。无或慎掘理数是所有不是有理数的实数。

(1)性质的区别:有理数是两个整数的比,总能写成整数、有限小数或无限循环小数。无理数不能写成两个整数之比,是无限不循环小数。(2)结构的区别:有理数是整数和分数的统称。无理数是所有不是有理数的实数。

性质不同。有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。无理数,也称为无限不循环小数,不能写作两整数之比。

有理数和无理数的区别有以下几点:有理数可以写为有限小数和无限循环小数,无理数只能写为无限不循环小数。所有的有理数都可以写成两个整数之比,而无理数却不能写成两个整数之比.范围不同。有理数集是整数集的扩张。

无理数和有理数的不同点 两者概念不同。有理数是整数和分数的统称,正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因此有理数的数集可分为正有理数、负有理数和零。无理数,也称为无限不循环小数。

有理数和无理数的区别

有理数和无理数的区别如下:1,定义不同:有理数是有限小数或无限循环小数;无理数是无限不循环小数。2,小数部分不同:有理数的小数部分是有限或为无限循环的数;无理数的小数部分是无限不循环的数。3,表达形式不同:有理数可以写为整数之比;无理数不能写为整数之比。

把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数。

有理数和无理数是数学中常见的两类数。它们的定义区别如下: 1. 有理数:有理数是可以表示为两个整数的比值的数,其中分母不为零。

可以看到头的数 有理数和无理数简单区分就是是否是循环的数 1. 有理数是指整数(正整数、负整数)和分数的统称,有理数是整数和分数的集合。

无理数和有理数的区别有:含义不同、特征不同、实质不同。含义不同 有理数的含义:数学中,有理数是一个整数a和一个正整数b的比,例如3/8,通常为a/b,也是有理数;无理数的含义:在数学中,无理数是所有不是有理数字的 实数,后者是由整数的比率(或分数)构成的数字。

有理数和无理数的区别是什么?

有理数与无理数的区别

1、两者概念不同。

有理数是整数和分数的统称,正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因此有理数的数集可分为正有理数、负有理数和零。

无理数,也称为无限不循环小数。简单来说,无理数就是10进制下的无限不循环小数,如圆周率、根号2等。

2、两者性质不同。

有理数的性质是一个整数a和一个正整数b的比,例如3比8,通常为a比b。

无理数的性质是由整数的比率或分数构成的数字。

3、两者范围不同。

有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法4种运算均可进行。

而无理数是指实数范围内,不能表示成两个整数之比的数。

有理数和无理数的区别

(1)性质的区别:

有理数是两个整数的比,总能写成整数、有限小数或无限循环小数。

无理数不能写成两个整数之比,是无限不循环小数。

(2)结构的区别:

有理数是整数和分数的统称。

无理数是所有不是有理数的实数。

(3)范围区别:

有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算均可进行。

无理数是指实数范围内不能表示成两个整数之比的数。

扩展资料

历史

毕达哥拉斯(Pythagoras,约公元前580年至公元前500年间)是古希腊的大数学家。他证明许多重要的定理,包括后来以他的名字命名的毕达哥拉斯定理(勾股定理),即直角三角形两直角边为边长的正方形的面积之和等于以斜边为边长的正方形的面积。

毕达哥拉斯将数学知识运用得纯熟之后,觉得不能只满足于用来算题解题,于是他试着从数学领域扩大到哲学,用数的观点去解释一下世界。经过一番刻苦实践,他提出“万物皆为数”的观点:数的元素就是万物的元素,世界是由数组成的,世界上的一切没有不可以用数来表示的,数本身就是世界的秩序。

公元前500年,毕达哥拉斯学派的弟子希伯索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形的边长为1,则对角线的长不是一个有理数),这一不可公度性与毕氏学派的“万物皆为数”(指有理数)的哲理大相径庭。

这一发现使该学派领导人惶恐,认为这将动摇他们在学术界的统治地位,于是极力封锁该真理的流传,希伯索斯被迫流亡他乡,不幸的是,在一条海船上还是遇到毕氏门徒。被毕氏门徒残忍地投入了水中杀害。科学史就这样拉开了序幕,却是一场悲剧。

希伯索斯的发现,第一次向人们揭示了有理数系的缺陷,证明了它不能同连续的无限直线等同看待,有理数并没有布满数轴上的点,在数轴上存在着不能用有理数表示的“孔隙”。而这种“孔隙”经后人证明简直多得“不可胜数”。

于是,古希腊人把有理数视为连续衔接的那种算术连续统的设想彻底地破灭了。不可公度量的发现连同芝诺悖论一同被称为数学史上的第一次数学危机,对以后2000多年数学的发展产生了深远的影响,促使人们从依靠直觉、经验而转向依靠证明,推动了公理几何学和逻辑学的发展,并且孕育了微积分思想萌芽。

不可约的本质是什么?长期以来众说纷纭,得不到正确的解释,两个不可通约的比值也一直认为是不可理喻的数。15世纪意大利著名画家达.芬奇称之为“无理的数”,17世纪德国天文学家开普勒称之为“不可名状”的数。

然而真理毕竟是淹没不了的,毕氏学派抹杀真理才是“无理”。人们为了纪念希伯索斯这位为真理而献身的可敬学者,就把不可通约的量取名“无理数”——这就是无理数的由来。

由无理数引发的数学危机一直延续到19世纪下半叶。1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数,并把实数理论建立在严格的科学基础上,从而结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机。

参考资料来源:百度百科-有理数

参考资料来源:百度百科-无理数

标签: 小数 无理数 循环

抱歉,评论功能暂时关闭!